Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations
نویسندگان
چکیده
منابع مشابه
Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations
Received 15 June 2011; Accepted 27 October 2011 Academic Editor: Vu Phat Copyright q 2011 J. Yang and H. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper studies the Euler-Maxwell system which is a model of a colli...
متن کاملConvergence of a Singular Euler-poisson Approximation of the Incompressible Navier-stokes Equations
In this note, we rigorously justify a singular approximation of the incompressible Navier-Stokes equations. Our approximation combines two classical approximations of the incompressible Euler equations: a standard relaxation approximation, but with a diffusive scaling, and the Euler-Poisson equations in the quasineutral regime.
متن کاملPotentially Singular Solutions of the 3d Incompressible Euler Equations
Whether the 3D incompressible Euler equations can develop a singularity in finite time from smooth initial data is one of the most challenging problems in mathematical fluid dynamics. This work attempts to provide an affirmative answer to this long-standing open question from a numerical point of view, by presenting a class of potentially singular solutions to the Euler equations computed in ax...
متن کاملCompressible Euler-Maxwell Equations
The Euler-Maxwell equations as a hydrodynamic model of charge transport of semiconductors in an electromagnetic field are studied. The global approximate solutions to the initial-boundary value problem are constructed by the fractional Godunov scheme. The uniform bound and H−1 compactness are proved. The approximate solutions are shown convergent by weak convergence methods. Then, with some new...
متن کاملConvergence of compressible Euler–Poisson equations to incompressible type Euler equations
In this paper, we study the convergence of time-dependent Euler–Poisson equations to incompressible type Euler equations via the quasi-neutral limit. The local existence of smooth solutions to the limit equations is proved by an iterative scheme. The method of asymptotic expansion and the symmetric hyperbolic property of the systems are used to justify the convergence of the limit.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2011
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2011/942024